Planet formation v "other processes"

Richard Alexander

Dept. of Physics & Astronomy, University of Leicester

"Hide & seek: where are the young planets?" Madrid, 28th June 2018

It's not only about planets...

- **Andsell+ (2016)**
- Median Class II disc mass ~5M_{Jup.}
 Class 0/I disc masses up to ~100M_{Jup.}
 Total mass accreted through disc ~1000M_{Jup.}
- Total mass in planets usually < I M_{Jup}.
- Planet formation is inefficient: >90% of disc (gas) mass does not end up in planets.

It's not even about planet formation...

- Angular momentum is invariably dominated by the disc.
- Planet-disc interactions can drive rapid, large-scale migration. Expect ~100% changes in semi-major axis.
- Observed exoplanet orbits probably tell us more about migration than they do about formation.

$$\tau_{\rm mig} \sim 10^5 {\rm yr} \left(\frac{M_p}{10 \, M_{\oplus}}\right)^{-1}$$

$$\times \left(\frac{\Sigma}{100 \, {\rm g \, cm}^{-2}}\right)^{-1}$$

Baruteau+ (2014, PP6)

Gas accretes, so discs evolve

Understanding disc evolution is critical

- Disc evolution determines conditions for planet formation.
- Most disc material (gas) does not end up in planets.
- Disc lifetime (~Myr) is a strict upper limit on the formation time-scale for (giant) planets.
- Discs dominate the dynamics/evolution of young planetary systems (e.g., migration, gas accretion).

Impossible to build predictive models of planet formation without first understanding disc dynamics & evolution.

Why do discs evolve?

Angular momentum transport

Mass gain

Angular momentum loss

Mass loss

Gravitational perturbations

Disc evolution processes

Transport
"turbulence", GI,
dust-gas drag

Mass gain infall

Ang mom loss

MHD winds/jets

Mass loss evaporation

Perturbations
planets, binaries,
encounters

Angular momentum transport

- In ideal MHD, magnetorotational instability (MRI; Balbus & Hawley 1991) drives turbulence and ang. mom. transport.
- "Viscous" disc models a crude approximation (at best), but OK-ish(?) on long (>>dynamical) time-scales.
- Accretion can't be the only process: $t_{
 u}(100{
 m AU})\gtrsim 1{
 m Myr}$.

Angular momentum transport

- In ideal MHD, magnetorotational instability (MRI; Balbus & Hawley 1991) drives turbulence and ang. mom. transport.
- "Viscous" disc models a crude approximation (at best), but OK-ish(?) on long (>>dynamical) time-scales.
- Accretion can't be the only process: $t_{\nu}(100 {\rm AU}) \gtrsim 1 {\rm Myr}$.

• <u>BUT...</u>

- non-ideal effects (ambipolar diffusion & Ohmic dissipation) suppress the MRI in real discs (e.g., Turner et al., PPVI).
- currently not at all clear that MHD turbulence is efficient enough to account for observed disc accretion rates.

Angular momentum transport

- non-ideal effects (ambipolar diffusion & Ohmic dissipation) suppress the MRI in real discs (e.g., Turner et al., PPVI).
- currently not at all clear that MHD turbulence is efficient enough to account for observed disc accretion rates.

Are discs actually turbulent?

Flaherty+ (2018); see also Simon+ (2018)

- ALMA CO observations set very low upper limits on turbulent velocity dispersion in outer disc: $v_{\rm turb} \lesssim 0.05 c_{\rm s}$.
- Implies turbulence is inefficient ($\alpha \leq 10^{-3}$) beyond ~30AU.
- If there are no turbulent stresses, why do discs accrete?

Does the dust move the gas?

$$v_{
m d,max} \simeq (H/R)^2 v_{
m K}$$
 $v_{
m g,visc} \simeq \alpha (H/R)^2 v_{
m K}$
 $v_{
m g,dust} \simeq \epsilon (H/R)^2 v_{
m K}$
 $\frac{v_{
m g,dust}}{v_{
m g,visc}} \simeq \frac{\epsilon}{\alpha}$

- Gas-drag causes rapid inward drift of dust. Traditional analysis neglects "back-reaction" on the gas (e.g., Weidenschilling 1977).
- If dust-to-gas ratio (in St~I particles) $\epsilon \gtrsim \alpha$, then "reflex" gas motion due to the dust back-reaction can dominate over viscous accretion (e.g., Bai & Stone 2010; Kanagawa+ 2017).

Does the dust move the gas?

Dipierro+ (arXiv:1806.10148)

- Depends on grain sizes: need significant mass in large (St>0.1) particles for dust drag to dominate (e.g., Kanagawa+ 2017).
- Differential gas/dust motion can give rise to structures: rings, gaps, cavities. At large radii (~100AU) the dust-gas interaction can dominate the gas accretion flow (Dipierro+ 2018).

Mass-loss: disc photoevaporation

Hollenbach+ (1994); Font+ (2004); Gorti+ (2008,2009); Owen+ (2010,2012)

- High-energy irradiation creates a hot layer on disc surface.
- Outside some critical radius, hot gas is unbound and flows as a wind (Hollenbach+ 1994, 2000).

Mass-loss: disc photoevaporation

Hollenbach+ (1994); Font+ (2004); Gorti+ (2008,2009); Owen+ (2010,2012)

- Photoevaporation can be driven by FUV (6–13.6eV), EUV (13.6–100eV) or X-ray (>0.1keV) irradiation.
- External irradiation dominates in some cases (e.g., ONC proplyds), but most discs also undergo "internal" mass-loss.
- Critical radius varies with heating mechanism, but mass-loss per unit area typically peaks at $\sim I-10AU$:

$$R_{\rm c} = \frac{0.2GM_*}{c_{\rm s}^2} \simeq 1.8 {\rm AU} \left(\frac{M_*}{1{\rm M}_{\odot}}\right) \left(\frac{T}{10^4 {\rm K}}\right)^{-1}$$

• Predicted mass-loss rates range from ~10- $^{10}M_{\odot}yr^{-1}$ (EUV) to ~10- $^{8}M_{\odot}yr^{-1}$ (X-rays, FUV).

Accretion + photoevaporation

Clarke+ (2001); RDA+ (2006a,b); Gorti+ (2009); Owen+ (2010)

- "Three-stage" model for gas disc evolution:
 - $\dot{M}_{\rm wind} \ll \dot{M}_{\rm acc}$, wind negligible, viscous evolution (few Myr).
 - $\dot{M}_{\rm wind} \sim \dot{M}_{\rm acc}$, gap opens, inner disc accretes (~105yr).
 - Inner hole, wind clears outer disc (few 105yr).

Qualitative behaviour is generic to this class of models: rapid inside-out dispersal after a long disc lifetime. Inner clearing depends critically on viscosity (Morishima 2012).

Observing photoevaporation

- Emission lines from hot/ionized layers are a direct probe of the wind structure. Lines should be blue-shifted in face-on discs.
- Ionized gas can also be detected in free-free (radio) emission.

Disc photoevaporation

Hollenbach+ (1994); Font+ (2004); Gorti+ (2008,2009); Owen+ (2010,2012)

Observing photoevaporation: lines

- Blue-shifted [NeII] emission ($\Delta v \sim 10 {
 m km \, s^{-1}}$) now observed in tens of discs (e.g., Pascucci+ 2009; Sacco+ 2012).
- Unambiguous detection of a slow, ionized wind.

Observing photoevaporation: lines

- Blue-shifted [NeII] emission ($\Delta v \sim 10 {\rm km\,s}^{-1}$) now observed in tens of discs (e.g., Pascucci+ 2009; Sacco+ 2012).
- Unambiguous detection of a slow, ionized wind.

Observing photoevaporation: lines

- Low-velocity component of [OI] 6300Å line often blue-shifted.
- Seems to trace FUV dissociation of OH (e.g., Simon+ 2016).
- Unbound component implies $\dot{M}\gtrsim 10^{-10}{\rm M_\odot\,yr^{-1}}$ in <u>neutral</u> gas flow. Same flow as [NeII], or different?

Observing photoevaporation: free-free

Macías+ (2016)

- Free-free emission in GM Aur inconsistent with X-ray ionization, suggests photoevaporation is EUV driven.
- Implies highly ionized wind, with relatively low mass-loss rate.

Angular momentum (& mass) loss

- In non-ideal MHD simulations, ambipolar diffusion + vertical (poloidal) field results in a magnetised disc wind.
- Local simulations by several groups robustly show both suppression of the MRI and wind launching (e.g., Bai & Stone 2013a,b; Lesur+ 2014; Simon+ 2015; Gressel+ 2015).

Angular momentum (& mass) loss

Simon+ (2015)

- Many uncertainties, most notably that mot simulations to date use local geometries (mostly shearing box). Robust mass & ang. mom. loss rates require global calculations.
- Likely that mass-loss is a combination of this process + photoevaporation: "magneto-thermal wind" (Bai+ 2016).

Angular momentum (& mass) loss

Pontoppidan+ (2011)

- Low-velocity (~km/s) molecular winds from ~AU radii may be common (e.g., Pontoppidan+ 2011; Bast+ 2011).
- Flows cannot be thermally-driven. Could these observations have detected MHD-driven mass-loss?

What are the wind mass-loss rates?

DZ Cha: Canovas+ (2018)

- Are winds primarily magnetic, thermal, or "magneto-thermal"?
- What are mass-loss and angular momentum-loss rates?
- How can we measure them?

Bai et al. (2016):

"...it appears unavoidable that in the inner regions of protoplanetary discs, accretion is largely wind-driven."

Dipierro et al. (2018):

"In typical protoplanetary discs dust feedback strongly affects the gas dynamics, even for small dust/gas ratios..."

Either/both of these would represent a <u>MAJOR</u> shift in our picture of protoplanetary disc evolution.

Infall: (how much) does it matter?

(Schematic figures courtesy of Alex Dunhill; PhD thesis, 2013)

In Class 0/I phases, two different "modes" of accretion:

i) envelope → disc

ii) disc → star (quasi-spherical) (~Keplerian rotation)

$$\dot{M}_{
m infall} \sim rac{c_s^3}{G}$$

$$\dot{M}_{
m disc} \sim lpha rac{c_s^3}{G}$$

Infall: the protostellar accretion problem

[Theorist's version of the luminosity problem; e.g., Kenyon & Hartmann 1995]

Harsono+ (2010), adapted from Levin (2003, 2007)

- To form a star, we must accrete at ~10-5M_☉yr-1 for ~0.1Myr.
- This is ~ infall rate from envelope, but >> maximum "steady" disc accretion rate.
- Required accretion rate cannot be sustained at all radii in the disc (unless discs are v.compact).
- Early stellar accretion is probably not steady; most mass is accreted through outbursts.

Discs with high infall rates are not stable

Figure from Phil Armitage, after Gammie (1996)

- Outbursts probably triggered by some combination of GI (outer disc), dead zone, and/or thermal-viscous instability (inner disc).
- Role of infall and importance of fragmentation remain unclear.
- Disc properties at <IMyr are highly dependent on infall physics.

Do planets form during the infall phase?

- HL Tau is Class I, massive, but shows no sign of nonaxisymmetric structures.
- No GI at ~10⁵yr suggests that "non-steady" disc accretion is a <u>very</u> short-lived evolutionary stage.
- Have planets already formed at ~10⁵yr? If they have, understanding infall dynamics is critical.
- But $t_{orb} > 10^3 yr$ in outer disc...

HL Tau: ALMA partnership (2015)

Modelling infall is...complicated

Binaries...

+100A + B Δ_{δ} (mas) -100+100-100 Δ_{α} (mas)

Forrest et al. (2004)

Ireland & Kraus (2008)

- Our field has a long and not very distinguished history of misinterpreting binaries (often as "transitional" discs).
- We should expect <u>lots</u> of binaries: 10-15% of G- to K-type MS stars are binaries with I-10AU separations.

Binaries...

Original figure from d'Alessio+ (2005)

- Our field has a long and not very distinguished history of misinterpreting binaries (often as "transitional" discs).
- We should expect <u>lots</u> of binaries: 10-15% of G- to K-type MS stars are binaries with I-I0AU separations.

Binaries...

HD142527: Price+ (2018)

- Lots of observed disc structures are probably "just" binaries.
- But many are not: >50% of "transition" discs do not have stellar-mass companions (Ruíz-Rodríguez+ 2016).
- Not just "contaminants"; we can learn a lot from binaries.

Are discs warped?

HK Tau: Jensen & Akeson (2014)

HD142157: Price+ (2018)

- Many discs in binary systems are <u>not</u> aligned with binary orbit.
- Also evidence of warped discs in several single-star systems.
- How common are these? And how often are we misinterpreting warps/tilts as gaps, spirals, etc?

Are discs warped?

- Many discs in binary systems are <u>not</u> aligned with binary orbit.
- Also evidence of warped discs in several single-star systems.
- How common are these? And how often are we misinterpreting warps/tilts as gaps, spirals, etc?

Is it actually all about planets?

1.0 28 24 207 Relative Declination (arcsec) 0.6 surface brightness -1.0Relative Right Ascension (arcsec)

HL Tau: ALMA partnership (2015)

Elias 24: Dipierro+ (2018)

- Many discs now observed to have gaps/rings at >50AU.
- Individual objects all seem consistent with giant planets in discs.
- Possible tension with incidence of planets: gaps/rings seem common, but (hot) giant planets at >20AU are rare (<5%).

Where are the old planets?

- Several robust detections of hot/ warm giant planets at ~Myr ages:
 - Cl Tau (Crockett+ 2012).
 - V830 Tau (Donati+ 2016, 17).
 - TAP-26b (Yu+ 2017).
 - K2-33b (David+ 2016).
- All gas giants with P ~ days, some are in accreting gas discs.
- Several detections in relatively small samples (~tens).
- Tension? Incidence of ~Gyr-age "hot Jupiters" is only 1%...

How can we tell these processes apart?

Owen (2016), after Strom+ (1989); Kenyon & Hartmann (1995); Hartmann (2005); many others

RDA & Armitage (2007); RDA (2008)

- Are "global" diagnostics relevant in the ALMA/SPHERE era? (e.g., Kamp+ 2017)
- What are "transitional" discs? Does the term still have meaning?
- What are the observations that can break the degeneracies?

How can we tell these processes apart?

van der Marel+ (2018)

- Are "global" diagnostics relevant in the ALMA/SPHERE era? (e.g., Kamp+ 2017)
- What are "transitional" discs? Does the term still have meaning?
- What are the observations that can break the degeneracies?

Open questions

- Do planets form early or late? Hard to form them late (low disc masses), hard to survive if they form early (rapid migration).
- Do planets (or cores) form as early as Class 0/l phases? If so, we need to think about infall / disc formation in much more detail.
- How do discs accrete?
- What drives disc mass-loss? UV, X-rays, or B-fields?
- If all these complex disc structures aren't planets, what are they?
- Are you sure "interesting new object X" isn't a binary?
- How common / important are misaligned / non-flat discs?
- What are we missing?